欢迎光临广州正牌防伪标签入网申请办理中心

双频rfid电子标签制作生产厂家

日期:2020-03-04 来源:防伪标签 编辑:广州正牌科技 浏览:

近年来物联网是人们普遍关注的一项新技术,射频识别技术作为物联网的一个关键技术,得到迅速的发展。目前在实际应用中的电子标签大多基于单频段的RFID技术,不能满足远近系统精准化的管理以及其他业务需求。有些公司提出把两个单频的电子标签复合在一起组成一个双频的电子标签,虽然在一定程度上满足了业务需求,但两个单频的标签相互独立,使用起来不方便。本文提出一种集成的双频RFID电子标签芯片,可以把两个或多个频段的电子标签集成在一颗芯片里,使两个频段共用芯片的电源、中央控制逻辑电路和存储器,实现两个频段的相互协调工作,避免两个频段同时工作产生电源冲突和读写存储器的冲突问题;

双频rfid电子标签制作生产厂家

现有的双频RFID标签解决方案

针对现有的单频段RFID电子标签不能同时满足远近距离、高速识别、高穿透力的应用需求,行业提出一种复合的双频RFID电子标签,,复合的电子标签包括两个部分:第一频段的电子标签和第二频段的电子标签,两个频段的标签相互独立,它们有各自的芯片和天线,它们组合在一起封装在一个装配体(标签外壳)中形成一个双频段电子标签[2]。虽然两个频段的标签相互独立,但在实际应用中它们的数据需要相互关联或共享,就需要在两个标签芯片中写入相同的数据,比如TID和UID数据,即相同的数据需要写两遍。

无源双频RFID电子标签芯片系统方案。包括第一频段的射频前端电路模块和第二频段的射频前端电路模块、状态检测电路模块、中央控制逻辑电路模块、电源电路模块、存储器电路等。两个射频模块分别处理两个频段射频信号的接收、解调和发送。电源模块把两个射频模块接收的电能转换成电压稳定的直流电源,为芯片的各模块供电。状态检测模块检测两个频段射频端口的激活状态,识别出哪个频段被激活,并把该频段的激活状态信息传递给中央控制逻辑电路模块。中央控制逻辑电路模块根据相关的RFID通信协议标准解析两个射频前端接收的指令并响应指令、读写存储器以及返回相关的数据,并依据两个射频端口的激活状态指示信号确定两个频段读写存储器的优先次序。两个频段共用电源、存储器、中央控制逻辑电路,可以使两个频段相互协调工作,实现存储数据的共享,避免两个频段同时工作时出现电源电压相互冲突问题和两个频段同时读写存储器的冲突问题。

双频rfid电子标签有低频端口和超高频端口,分别接低频标签天线和超高频标签天线,接收低频和超高频射频信号。两个射频端口可单独连接低频或超高频天线制成低频或超高频单频段电子标签,也可以同时连接一个低频天线和一个超高频天线制成双频电子标签。当该芯片制成双频电子标签时,在低频和超高频同时激活时,低频工作优先,芯片会自动切换到低频工作模式;在只有一种低频或超高频单独激活时,该电子标签芯片自动选择相对应频段的工作模式。

芯片的低频段和超高频段共用存储器,有相同的TID号,相同的数据只需写一次即可,并且存储用户区的数据共享。

双频rfid电子标签制作 电源管理模块

提出的双频RFID标签芯片方案中,解决两个频段同时工作时产生电源冲突和读写存储器冲突问题的关键在于电源管理模块。使用统一的电源供电和状态检测,使各种冲突问题迎刃而解。因此下面重点阐述双频RFID标签芯片的电源管理电路,对于单个频段的射频前端电路,在很多文献中都有详细描述,本文不再赘述。

双频RFID标签芯片中,两个频段既可以单独工作,也可以同时工作,因此芯片既可以由低频端口的磁场供电,也可以由超高频端口的电磁场供电,并且两边的供电压都有较大的变化范围。芯片电源管理电路的功能就是管理低频和超高频的供电电源,使它们对系统供电时不产生冲突。当标签处于低频磁场中,LF状态检测电路检测低频段的电压,当其达到设定的电压阈值时就输出低频激活状态信号,使数字电路切换到低频工作模式,实现低频工作优先,解决两个频段同时读存储器的冲突问题。

双频rfid电子标签 UHF端的整流电路,超高频端的电源恢复电路采用电荷泵整流电路,如图3所示。将从天线接收下来的UHF射频信号恢复出直流电源VDU,为芯片的后续电路提供原始的电源

双频rfid电子标签制作电源整合及电压调节电路;经过超高频整流电路和低频整流电路输出的两个电源VDU和VDL需要整合成一个电源为芯片供电,并且由于整流电路提供的输出电压随环境因素变化,它还不能满足为后续电路供电的要求,因此还需要一个电压调节电路,提供一个较为稳定的电压,作为整个芯片电路的工作电压。

电源整合及电压调节电路;Pmos晶体管MP3作为电源整合开关,当它截止时,由VDU为芯片供电,当它导通时,把VDL连接到VDU,由VDL为芯片供电。为了防止MP3露电,需要把MP3的衬底连接VDU和VDL两者中电压较高的一个,因此MP1和MP2作为MP3的衬底电压选择开关,当MP1导通MP2截止时,选择VDU作为MP3的衬底电压,反之则选择VDL作为MP3的衬底电压。反相器inv1、MN1、MN2、MP4、MP5作为电平转换电路,对输入信号LF_flag进行电平转换。当超高频端被激活而低频端没有被激活时,LF_flag为低电平,节点V1为高电平,V2为低电平,MP1导通,MP2和MP3截止,由VDU为芯片供电;当超高频端没有被激活而低频端被激活时,LF_flag为高电平,节点V1为低电平,V2为高电平,MP1截止,MP2和MP3导通,由VDL为芯片供电;当超高频端和低频端同时被激活时,LF_flag为高电平,节点V1为低电平,V2为高电平,MP1截止,MP2和MP3导通,此时VDU和VDL同时为芯片供电,由于芯片设计成低频工作优先,因此此时的芯片工作在低频优先工作状态。基准电压源是一个与电源电压无关的参考源。输出电源VDD电压经电阻R1和R2分压后与基准电压相比较,通过运算放大器AMP1放大其差值来控制MP6晶体管的栅极电压,使得输出电压VDD与基准电压源的输出电压保持相对稳定的状态。

双频rfid电子标签制作 芯片测试结果,双频RFID电子标签芯片电路基于某代工厂 0.18 μm的标准CMOS工艺设计并流片。芯片的电源整合及电压调节电路的仿真结果,在500 μs之前电路由超高频端供电,此时VDU供电电压为2.2 V,VDD输出电压为1.18 V,LF_flag为低电平,VDL为低电压,虽然VDL上有很大的干扰信号,但由于此时中MP3晶体管处于截止状态,VDL与VDU断开,VDL上的干扰信号对VDU没有产生影响;在500 μs之后VDL电压为2.7 V,LF_flag为高电平,此时由低频端供电或者由低频端和超高端同时供电,VDU的电压取两个输入电压的较高者。不管是由低频端供电还是由超高频端供电,VDD输出稳定的电压为整个芯片电路供电。

防伪标识防伪标识
  • 什么是防伪标识?防伪标识(标签)是产品生产厂家对产品做的防伪认证,这种认证使用二维码防伪技术,就像每个人都有身份证一样;在产品销售后消费者可以通过微信扫一扫防伪标进行防伪查询,获得生产厂家和产品真假信息。防伪标签在保护生产厂家的产品不被仿冒,也帮助消费者快速查询产品的真假。

  • 防伪标签 二维码防伪标签

相关文章推荐

Site Map网站导航

Contact us联系我们

广州正牌科技有限公司
热线:15986356098
粤ICP备19035072号
正牌科技©版权所有

扫二维码,关注微信

广州正牌科技有限公司微信公众号
在线客服
咨询热线电话

159-8635-6098

广州正牌科技有限公司微信扫码联系客服